Соматосенсорная система. Тактильная чувствительность. Функциональные свойства кожных рецепторов Ретикулярная формация ствола мозга и ее нисходящее влияние на рефлекторную деятельность спинного мозга. Восходящие активирующие влияния ретикулярной формации с

Тактильная сенсорная система, наряду с проприорецептивной, зрительной и вестибулярной сенсорными системами, «поставляет» головному мозгу информацию о положении и движении тела в пространстве, о положении его отдельных частей. Кроме того, она играет важную роль в ориентации человека в окружающей среде (особенно сильно кожное осязание развивается у слепых и слепоглухонемых, позволяя тем самым таким людям избегать воздействия повреждающего агента). Благодаря тактильной сенсорной системе осуществляется контакт грудного ребенка с матерью, выполнение различных игровых, образовательных и трудовых операций, интимные отношения между мужчиной и женщиной, ощущение комфорта от носимой одежды. В принципе, такие примеры, доказывающие значение тактильной рецепции, можно перечислять еще и еще. Скажем только одно – нарушение этого вида чувствительности существенно снижает адаптационные возможности человека и лишает его многих радостей жизни. Особое место тактильная сенсорная система занимает у млекопитающих, выполняя жизненно важные функции – тактильное исследование окружающей среды, питание, звукообразование и т.д.

Тактильная чувствительность резко повышена на участках тела, которые покрыты волосами. Это объясняется тем, что волосы играют роль рычажков и усиливают передачу раздражения в несколько раз, а так как 95% поверхности человеческого тела покрыто волосами, на некоторых участках едва заметными, то любое прикосновение к поверхности тела резко усиливается.

Рецепторы осязательного анализатора. Различаютследующие основные механорецепторы – свободные неинкапсулированные нервные окончания, свободные нервные окончания волосяных фолликулов, диски Меркеля, тельца Руффини, тельца Мейснера и тельца Пачини. Строение указанных рецепторов различно, они распределены неравномерно и локализуются на разной глубине кожи. Первые два типа рецепторов относятся к первичным (являются окончаниями дендрита чувствительного нейрона), остальные – ко вторичным (представляют собой инкапсулированные специализированные клетки, трансформирующие механическое воздействие в рецепторный потенциал, который передается на дендрит чувствительного нейрона). Рассмотрим отдельные виды рецепторов (рис. 4.1).

Рис. 4.1. Схема строения и положения механорецепторов в коже, на не покрытых волосами (А) и волосистых (Б) участках кожи.

Свободные неинкапсулированные нервные окончания являются самыми распространенными рецепторами кожи. Они находятся в основном в сосочковом слое дермы – обычно идут вдоль мелких сосудов и представляют собой разветвления дендрита афферентных нейронов. Первоначально их считали рецепторами боли, но в настоящее время их рассматривают как полимодальные рецепторы, отвечающие и на болевые, и на температурные, и на механические стимулы. Это медленно адаптирующиеся рецепторы: продолжают отвечать весь период времени, пока действует стимул.

Свободные нервные окончания волосяных фолликулов также представляют собой разветвления дендрита афферентного нейрона, которые оплетают волосяную сумку. Обычно фолликул получает волокна от нескольких чувствительных нейронов, но в то же время один и тот же дендрит чувствительного нейрона иннервирует несколько волосяных фолликулов. Волос, как было уже отмечено выше, служит рычагом, усиливающим раздражение нервных окончаний, что и объясняет высокую чувствительность волос к прикосновению. Указанные рецепторы реагируют преимущественно на легкое прикосновение и осуществляют пространственное и временное тактильное различение.

Диски (клеточные комплексы) Меркеля представляют собой видоизмененные эпителиальные клетки, с которыми образуют синапсы дендриты афферентных нейронов. Находятся в базальном слое эпидермиса и частично в сосочковом слое дермы в виде небольших скоплений. Особенно много дисков Меркеля в участках кожи с высокой чувствительностью, т.е. в голой коже пальцев рук и на губах. В покрытой волосами коже они лежат в особых колоколообразных тельцах, выдающихся над окружающей кожной поверхностью (в каждом таком образовании, называемом тактильным тельцем Пинкуса-Игго, находится 30-50 клеток Меркеля, связанных с афферентными нервными волокнами). При высоте около 0,1 мм и диаметре 0,2-0,4 мм эти тельца едва различимы невооруженным глазом.

Поскольку диски Меркеля медленно адаптирующиеся рецепторы, то их рассматривают в качестве пропорционального датчика, т.е. генерация рецепторного потенциала в них тем активнее, чем сильнее действует раздражитель. Эти рецепторы рассматривают как рецепторы давления, или силы, поскольку они воспринимают изменение силы механического воздействия.

Тельца (окончания) Руффини располагаются в волосистой части кожи – в глубоких слоях эпидермиса и в сосочковом слое дермы. Представляют собой веретеновидной формы капсулу, образованную плотно переплетенными коллагеновыми волокнами. Внутри такой капсулы содержится жидкость, в которую погружены разветвления дендрита чувствительного нейрона. Как и диски Меркеля, являются рецепторами давления, или силы.

Тельца Мейснера (тактильное мейснеровое тельце) представляют собой капсулу конусовидной или овальной формы. Капсула ориентирована перпендикулярно поверхности кожи. Ее стенки образованы многочисленными пластинчатыми клетками, между которыми параллельно поверхности кожи располагаются терминали дендрита чувствительного нейрона. Эти рецепторы находятся в сосочках собственно кориума, в участках, лишенных волос (кожа ладоней, подошв, пальцев рук и ног, а также губы, сосочки молочных желез и половые органы). В покрытой волосами коже их меньше и здесь они принимают форму рецепторов волосяных фолликулов. Реагируют на скорость изменения силы, т.е. являются датчиком скорости.

Тельца Пачини (пластинчатые тельца, тельца Фатера-Пачини) – наиболее крупные и наиболее распространенные в организме рецепторы, а потому они являются наиболее изученными рецепторами кожи. Располагаются в гиподерме и частично в глубоких слоях дермы. Кроме того, они обнаружены и в сухожилиях и фасциях мышц, в надкостнице, в суставных сумках. Тельце Пачини напоминает луковицу, состоит из наружной капсулы, внутренней колбы и заключенного в нее дендрита афферентного нейрона. Пространство между наружной капсулой и внутренней колбой, а также внутри колбы заполнено жидкостью (ликвором). Возбуждение этих рецепторов происходит при кратковременном (в течение 0,1 мс) смещении капсулы на 0,5 мкм.

Тельца Пачини считаются датчиком ускорения. Благодаря своим свойствам они воспринимают самую незначительную деформацию кожи при соприкосновении с различными предметами и почвой, т.е. с какой скоростью смещается кожа.

Таким образом, большинство тактильных рецепторов локализовано, как правило, в глубоких слоях эпидермиса и сосочковом слое кориума. Всех их можно разделить на три главных типа:

- рецепторы давления (датчики силы), которые ведут себя как пропорциональные датчики, т.е. генерация рецепторного потенциала в них тем активнее, чем сильнее действует раздражитель. Поэтому их еще называют пропорциональными рецепторами. Это свободные неинкапсулированные нервные окончания, диски Меркля, тельца Руффини;

- рецепторы прикосновения (датчики скорости) реагируют на скорость изменения силы, т.е. скорость вдавления стимула, поэтому осуществляют пространственное и временное тактильное различение. Это тельца Мейсмера и рецепторы волосяных фолликулов;

- рецепторы вибрации (датчики ускорения) – тельца Пачини - реагируют на изменение скорости механического воздействия.

Однако при этом необходимо подчеркнуть, что механические стимулы, обычно действующие на кожу, одновременно возбуждают в той или иной степени несколько типов механорецепторов в зависимости от характера стимула. Поэтому возникающие ощущения нельзя приписать рецепторам одного типа. Соответственно в повседневной жизни трудно определить различия между ощущениями давления и прикосновения.

Принцип работы механорецепторов . Независимо от того, что одни рецепторы реагируют на изменение силы, вторые – на скорость изменения этой силы, а третьи – на вторую производную изменения силы, во всех случаях принцип работы рецептора состоит в том, что под влиянием механического стимула в мембране рецептора изменяется ионная проницаемость, что приводит к появлению рецепторного потенциала. Он вызывает выделение медиатора, что сопровождается появлением генераторного потенциала в дендритах чувствительного нейрона, благодаря которому изменяется частота генерации потенциалов действия. Различия в восприятии механических стимулов определяются скоростью адаптации тактильных рецепторов. Так, быстро адаптирующиеся рецепторы являются датчиками скорости, или ускорения, а медленно адаптирующиеся – датчиками изменения силы. В то же время скорость адаптации определяется структурой рецепторов – наличие сложно организованной капсулы рецептора повышает скорость его адаптации (укорачивает рецепторный потенциал), поскольку такая капсула хорошо проводит быстрые и гасит медленные изменения давления. Адаптация механорецепторов кожи имеет большое значение – благодаря этому свойству рецепторов мы перестаем ощущать постоянное давление одежды, привыкаем носить на роговице глаз контактные линзы, а на носу – очки и т.д.

Проведение осязательной информации в центральный отдел. Сенсорная информация от механорецепторов кожи передается в кору больших полушарий по нервным волокнам тонкого и клиновидного пучков, образующих лемнисковую систему. Тонкий пучок, или пучок Голля, несет информацию от рецепторов нижних конечностей и нижней части туловища, а клиновидный пучок, или Бурдаха, - от рецепторов верхних конечностей и верхней части туловища. Оба пути состоят из афферентных нейронов (они находятся в спинномозговых узлах), аксоны которых вступают в задние рога спинного мозга и, не прерываясь, направляются в составе задних столбов до тонкого (ядро Голля) и клиновидного (ядро Бурдаха) ядер продолговатого мозга. Аксоны нейронов этих ядер полностью перекрещиваются на уровне олив, образуя медиальный лемниск (петлю), и, поднимаясь дальше, заканчиваются в специфических ядрах таламуса, которые из-за своего анатомического положения называют вентробазальным комплексом. Нейроны специфических ядер таламуса посылают свои аксоны в соматосенсорные зоны коры больших полушарий (SI и SII). Поражение задних столбов клинически проявляется в потере мышечно-суставного чувства, вибрационной и тактильной чувствительности на стороне поражения при сохранении болевой и температурной чувствительности.

Лемнисковая система проводит точную (по силе и месту воздействия) и сложную (о давлении, прикосновении, вибрации и движении в суставах) информацию с большой скоростью (до 80 км/с).

Для всех составляющих лемнисковой системы (задних столбов спинного мозга, тонкого и клиновидного ядер, таламических ядер и корковых областей) выявлена четкая топографическая организация проекции кожи, т.е. каждый участок кожи контрлатеральной части тела занимает определенную зону, площадь которой зависит от функционального значения этой части тела.

Часть импульсов от рецепторов давления кожи и слизистой передается в кору больших полушарий и по вентральному спиноталамическому тракту, который проходит в составе передних столбов спинного мозга. Однако в спиноталамической системе на уровне таламических ядер правильная соматотопическая организация представительства поверхности тела отсутствует.

Особое место в передаче сенсорной информации от механорецепторов отводится V паре черепно-мозговых нервов - тройничному нерву , который в своих трех ветвях содержит афференты, идущие от лица и полости рта. Он иннервирует кожу, зубы, слизистую полости рта, язык и роговицу. Ко времени рождения тройничная система уже хорошо развита и проводит сенсорные сигналы, которые запускают пищевое поведение. Именно она обеспечивает первое сенсорное знакомство новорожденного с окружающим миром.

Корковый уровень анализа тактильной информации. Информация от нейронов специфических ядер таламуса первоначально поступает в две проекционные соматосенсорные зоны коры больших полушарий (SI и SII ). В частности, информация от нейронов вентробазального комплекса направляется (контрлатерально) в первую проекционную зону, которая у приматов и человека находится в постцентральной извилине (SI). От нейронов задней группы ядер таламуса информация преимущественно поступает (контрлатерально и ипсилатерально) во вторую проекционную соматосенсорную зону коры (SII), которая расположена в области сильвиевой (латеральной) борозды (рядом со слуховой зоной). От этих двух проекционных соматосенсорных зон информация поступает в передние и задние ассоциативные зоны коры.

Первая проекционная соматосенсорная область, локализованная в постцентральной извилине (первичные зоны - 1-е и 3-е поля по Бродману, вторичные зоны - 2-е и 5-е поля), является, по сути, местом окончания лемнискового пути и ядром тактильного анализатора. Она отличается от других областей коры очень высокой степенью топографической организации (проекции различных областей поверхности тела на соматосенсорную кору осуществляются по принципу "точка в точку"). Такое явление называют соматотопией, или топографическим представительством . О наличии соматотопии свидетельствует тот факт, что при раздражении поверхности кожи короткими точечными прикосновениями первичный ответ в соматосенсорной коре локализуется в строго ограниченном участке. Показано, что размеры представительства соответствующих участков поверхности кожи у человека и приматов в постцентральной извилине связаны не с величиной поверхности их тела, а зависят от биологической значимости информации, воспринимающейся тем или иным участком кожи. Например, у человека представительство губ, лица и кистей рук в этой зоне по площади намного больше, чем представительство туловища и нижних конечностей. Это дает специфический рисунок сенсорного гомункулюса - отражения тела человека в постцентральной извилине (рис. 4.2). Характер этого рисунка свидетельствует о высокой чувствительности и тонком различении для этих частей тела, а также их биологической значимости. Так, при осмотре какого-либо предмета, когда нам надо выяснить форму, наличие шероховатостей и т.д., мы поглаживаем этот предмет, т.е. касаемся его поверхности кожей нашей ладони.

Когда кора в области SI разрушена повреждением или удалена с терапевтической целью, возникает дефицит восприятия. Стимуляция кожи еще может быть воспринята как таковая, но способность локализовать ее и распознать пространственные детали раздражителя нарушается. Так, например, больные не могли на ощупь отличить овал от параллелепипеда (в клинике это нарушение носит название астерогнозис ). Степень дефицита зависит от размеров поврежденного участка коры. Здесь снова выступает соматотопическая организация. Однако надо сказать, что после достаточно долгого промежутка времени подобные нарушения становятся слабее. Такое улучшение, по-видимому, обусловлено способностью других областей коры (например, 5-го поля теменной коры, соседнего с SI) принять на себя функции SI.

Рис.4.2. Схема чувствительного гомункулюса (соматотопическая организация соматосенсорной коры SI человека).

Разрез полушарий (на уровне постцентральной извилины) во фронтальной плоскости. Обозначения показывают пространственное представительство поверхности тела в коре, установленное на основании локальной стимуляции мозга бодрствующих больных.

Анализ информации от тактильных рецепторов в первой соматосенсорной зоне осуществляется нейронами, объединенными в вертикальные колонки , которые можно рассматривать как своеобразные функциональные единицы, или блоки коры. Каждая такая колонка, получая информацию от рецепторов одной и той же модальности, находящихся на одном и том же рецептивном поле кожи, проводит этот анализ с участием специализированных нейронов, число которых в колонке достигает 10 5 . Каждый из этих нейронов «настроен» на определенный признак, наличие которого в поступающей информации вызывает возбуждение соответствующего нейрона. Благодаря деятельности колонок мозг получает информацию обо всех свойствах стимула, воздействующего на соответствующий участок кожи.

Во вторую соматосенсорную зону коры больших полушарий (SII), расположенную в области сильвиевой борозды вблизи от слуховой зоны (40-е и 51-е поля), поступают импульсы от тактильных рецепторов кожи «своей» и противоположной стороны. Эта зона содержит точное и детальное представительство поверхности тела, как и первая соматосенсорная зона, с тем различием, что проекции обеих половин тела во второй соматосенсорной зоне полностью перекрываются, благодаря чему происходит объединение и сравнение информации поступающей от правой и левой половины тела, т.е. имеет место билатеральное соматотопическое представительство. Как полагают, SII специально играет роль в сенсорной и моторной координации активности на двух сторонах тела (например, хватание или ощупывание обеим руками). Не исключено, что вторая соматосенсорная зона может, кроме того, осуществлять контроль над афферентной передачей сигналов в таламических ядрах.

От первичных и вторичных проекционных зон коры информация от тактильных рецепторов поступает в передние (фронтальные) и задние ассоциативные зоны коры, благодаря которым завершается процесс восприятия, т.е. происходит опознание образа (акцепция сигнала). Это реализуется с участием специальных нейронов («бабушкиных» нейронов), проходящих «обучение» в процессе индивидуального развития человека.

В целом роль соматосенсорной зоны коры состоит в интегральной оценке соматосенсорных сигналов, во включении их в сферу сознания, полисенсорный синтез и в сенсорное обеспечение выработки новых двигательных навыков. Удаление или повреждение соматосенсорных зон коры приводит к нарушению способности локализовать тактильные ощущения, а их электростимуляция вызывает ощущение давления, прикосновения, вибрации и зуда.

3 белковые рецепторы

белковые молекулы или молекулярные комплексы, расположенные на поверхности клетки или внутри ее, которые способны специфически связывать другие молекулы, несущие внешние для клетки регуляторные сигналы (напр. , гормоны, нейромедиаторы, факторы роста, лимфокины, лекарство и т.п. ), или реагировать на физические факторы (напр. , свет). Благодаря конформационным изменениям, индуцируемым этими сигналами, Б.р. запускают определенные каскадные биохимические процессы в клетке, в результате чего реализуется ее физиологический ответ на внешний сигнал. Большинство Б.р. локализовано в плазматической мембране и представляет собой пронизывающие мембрану гликопротеиды. Они взаимодействуют с белковыми или пептидными гормонами, а также с низкомолекулярными биорегуляторами, напр. с простагландинами, аминокислотами. Рецептор света - родопсин - локализован в мембранных структурах сетчатки глаза. Внутриклеточные Б.р. обычно локализованы в ядре и взаимодействуют со стероидными гормонами и гормонами щитовидной железы (производными тирозина). Известно несколько механизмов, с помощью которых активированные Б.р. запускают биохимические процессы в клетке; напр. , при взаимодействии ацетилхолина с никотиновым холинорецептором (чувствителен не только к ацетилхолину, но также и к никотину), локализованным в постсинаптической мембране, открывается канал для ионов натрия. Увеличение внутриклеточного содержания Na + приводит к деполяризации мембраны, что обусловливает передачу нервного импульса. Другая группа мембранных Б.р. сопряжена с мембрано-связанными регуляторными ферментами, в частности с аденилатциклазой, гуанилатциклазой, фосфолипазой С. К Б.р., активирующим аденилатциклазу, относятся, напр. , β-адренергические рецепторы, рецепторы глюкагона, тиреотропного гормона; к Б.р., ингибирующим этот фермент, относятся α2-адренергические рецепторы, некоторые опиоидные рецепторы (см. опиоидные пептиды), рецепторы соматостатина и др. Сопряжение Б.р. со всеми указанными ферментами осуществляется через регуляторные Г-белки (см. Г-белки). Некоторые мембранные Б.р., обладают собственной ферментативной (протеинкиназной) активностью (напр. , рецепторы инсулина и различных факторов роста). Эти протеинкиназы регулируют активность различных белков путем их фосфорилирования по остаткам тирозина. Специфические гормоны стимулируют протеинкиназную активность и аутофосфорилирование молекул Б.р., что необходимо для преобразования ими регуляторных сигналов. Б.р. могут состоять из одной или нескольких полипептидных цепей, ассоциированных благодаря невалентным взаимодействиям или сшивкам дисульфидными связями; напр. , Б.р. для инсулина состоит из четырех полипептидных цепей двух типов (α2β2), которые сшиты дисульфидными связями. Впервые термин "рецепторная субстанция" предложен Дж. Лэнгли в 1906 г. для обозначения компонентов мышечной клетки, за которые конкурируют никотин и кураре, блокирующие передачу сигнала от нервного окончания к мышце.

4 адренергические рецепторы

5 рецепторы сетчатки

6 сиротские рецепторы

7 тактильные индикаторные клавиши

8 адренергические рецепторы

9 активируемые протеазами рецепторы

10 альфа-рецепторы

11 вкусовые рецепторы

12 гептасульфидные рецепторы циклодекстрина

13 глутаматные рецепторы

14 кальцийчувствительный рецепторы

15 колбочковые рецепторы сетчатки

16 меланокортиновые рецепторы

17 метаботропные рецепторы глутамата

18 многофункциональные рецепторы, такие как авидин или стрептавидин

19 мотилиновые рецепторы

К кожному анализатору относят совокупность анатомических образований кожных рецепторов, согласованной деятельностью которых определяются такие виды кожной чувствительности, как чувство давления, растяжения, прикосновения, вибрации, тепла, холода и боли. Согласно современным представлениям, большинство рецепторов, специализируясь на каком-либо одном виде раздражений, могут воспринимать смежные (см. ниже). В целом система кожной чувствительности очень подвижна: в зависимости от различных факторов внешней и внутренней среды может меняться количество функционирующих рецепторов и степень их чувствительности.

Все рецепторные образования кожи в зависимости от их структуры делят на две группы: свободные и несвободные. Несвободные, в свою очередь, подразделяются на инкапсулированные и неинкапсулированныс. Свободные нервные окончания представлены конечными разветвлениями дендритов сенсорных нейронов. Они теряют миелин, проникают между клетками эпителия и располагаются в эпидермисе и дерме. В некоторых случаях конечные разветвления осевого цилиндра окутывают измененные эпителиальные клетки, образуя осязательные мениски.

Несвободные нервные окончания состоят из ветвлений волокна, потерявшего миелин, и из клеток нейроглии. К несвободным инкапсулированным рецепторным образованиям кожи относятся пластинчатые тельца, или тельца Фатера-Пачини, осязательные тельца, или тельца Мейснера, колбы Краузе и др. (рис. 12.15).

Рис. 12.15.

А – пластинчатое тельце Фатера-Пачини: 1 – наружная колба; 2 – концевой отдел нервного волокна; Б – осязательное мейснерово тельце; В – свободные нервные окончания; Г – осязательное тельце Меркеля; Д – колба Краузе

Тельца Фатера-Пачини состоят из расположенной снаружи соединительнотканной капсулы и внутренней колбы. Последняя содержит измененные шванновские клетки. Во внутреннюю колбу входит, теряя свою миелиновую оболочку, чувствительное нервное волокно.

Тельца Мейснера представляют собой тонкую соединительнотканную капсулу, внутри которой перпендикулярно к длинной оси тельца расположены глиальные клетки, накладывающиеся друг на друга. С поверхностью глиальных клеток контактируют разветвления нервного волокна, которые, входя в тельце, теряют миелин.

Колбы Краузе имеют сферическую форму, снаружи они одеты соединительнотканной капсулой. Нервные волокна, входящие внутрь колбы, сильно переплетаются.

Количество различного типа рецепторов, приходящихся на единицу поверхности кожи, неодинаково. В среднем на 1 см2 приходится 50 болевых, 25 тактильных, 12 холодовых точек и 2 тепловые.

Кожа различных участков тела имеет разное количество рецепторов и соответственно обладает неодинаковой чувствительностью. Особенно большое количество рецепторов расположено иа поверхности губ, на кожной поверхности кончиков пальцев.

Функциональные свойства кожных рецепторов

В коже имеются разнообразные мало дифференцированные рецепторы, которые разделяются: 1) на тактильные, раздражение которых вызывает ощущения осязания и давления; 2) терморецепторы – тепла и холода; 3) болевые.

Абсолютная специфичность, т.е. способность реагировать только на какой-то один вид раздражения, характерна лишь для некоторых рецепторных образований кожи. Многие из них реагируют на раздражители разной модальности. Возникновение различных ощущений зависит не только от того, какое рецепторное образование кожи подверглось раздражению, но и от характера импульсации, идущей от этого рецептора в центральную нервную систему.

Восприятие механических раздражений (прикосновение, давление, вибрации, растяжения) называют тактильной рецепцией. Тактильные рецепторы находятся на поверхности кожи и слизистых оболочках полости рта и носа. Они возбуждаются при прикосновении к ним или давлении на них.

К тактильным рецепторам относят тельца Мейснера и меркелевы диски, имеющиеся в большом количестве на кончиках пальцев и губах. К рецепторам давления относят тельца Пачини, которые сосредоточены в глубоких слоях кожи, в сухожилиях, связках, брюшине, брыжейке кишечника. Нервные импульсы, возникшие в тактильных рецепторах, по чувствительным волокнам поступают в заднюю центральную извилину коры головного мозга.

В различных местах кожи тактильная чувствительность проявляется в неодинаковой степени. Она наиболее высока на поверхности губ, носа, а на спине, подошве стоп, животе выражена в меньшей степени. Показано, что одновременное прикосновение к двум точкам кожи не всегда сопровождается возникновением ощущения двух воздействий. Если указанные точки лежат очень близко друг к другу, то возникает ощущение одного прикосновения. Наименьшее расстояние между точками кожи, при раздражении которых возникает ощущение двух прикосновений, называют порогом пространства. Пороги пространства неодинаковы в различных местах кожи: они минимальны на копчиках пальцев, губах и языке и максимальны на бедре, плече, спине.

Температура окружающей среды возбуждает терморецепторы, сосредоточенные в коже, на роговой оболочке глаза, в слизистых оболочках. Изменение температуры внутренней среды организма приводит к возбуждению температурных рецепторов, расположенных в гипоталамусе.

Температурные рецепторы имеют очень важное значение в сохранении постоянства температуры тела, без которого была бы невозможна жизнедеятельность нашего организма.

Существуют два типа температурных рецепторов: воспринимающие холод и тепло. Тепловые рецепторы представлены тельцами Руффини, холодовые – колбочками Краузе. Голые окончания афферентных нервных волокон также могут выполнять функции холодовых и тепловых рецепторов.

Терморецепторы в коже располагаются на разной глубине: ближе к поверхносности находятся холодовые, глубже – тепловые рецепторы. Вследствие этого время реакции на холодовые раздражения меньше, чем на тепловые. Терморецепторы сгруппированы в определенных точках поверхности тела человека, при этом холодовых точек значительно больше, чем тепловых. Выраженность ощущения тепла и холода зависит от места наносимого раздражения, величины раздражаемой поверхности и окружающей температуры.

Болевые ощущения возникают при действии любых раздражителей чрезмерной силы. Ощущение боли имеет большое значение для сохранения жизни как сигнал опасности, вызывающий оборонительные рефлексы скелетной мускулатуры и внутренних органов. Однако повреждающее или длительное раздражение болевых рецепторов искажает оборонительные рефлексы, делая их неадаптивными.

Боль локализуется меньше, чем другие виды кожной чувствительности, так как возбуждение, возникающее при раздражении болевых рецепторов, широко распространяется по нервной системе. Болевые ощущения возникают также при достижении критического уровня раздражения тактильных рецепторов и терморецепторов. Одновременное раздражение рецепторов зрения, слуха, обоняния и вкуса снижает ощущение боли.

Предполагается, что возникновение боли связано с раздражением окончаний особых нервных волокон. Получены данные, свидетельствующие о том, что в формировании боли имеет значение образование в нервных окончаниях гистамина. Возникновение боли связывают также с другими веществами, образующимися в тканях в месте повреждения, – брадикинином, XII фактором свертывания крови (фактор Хагемана) и др.

Тактильная чувствительность (лат. tactilis - осязаемый, от tango - касаюсь)

ощущение, возникающее при действии на кожную поверхность различных механических стимулов. Т. ч. - разновидность осязания (См. Осязание); зависит от вида воздействия: прикосновения, давления, вибрации (ритмичного прикосновения). Тактильные стимулы воспринимаются свободными нервными окончаниями, нервными сплетениями вокруг волосяных фолликулов, тельцами Пачини (рис. 1 и 2 ), Мейснера и Меркеля дисками (см. Мейснера тельца , Меркеля клетки) и др. Несколько дисков Меркеля или телец Мейснера могут иннервироваться одним нервным волокном, составляя своеобразное тактильное образование. Инкапсулированные Рецепторы (типа телец Пачини и Мейснера) определяют порог Т. ч.: они возбуждаются при прикосновении и вибрации и быстро адаптируются. Ощущение давления возникает при возбуждении медленно адаптирующихся рецепторов (таких, как свободные нервные окончания). По сравнению с др. кожными ощущениями Т. ч. быстро уменьшается при длительном раздражении, так как в целом процессы адаптации в тактильных рецепторах развиваются весьма быстро. Наиболее дифференцированная Т. ч. возникает при раздражении кончиков пальцев рук, губ, языка, где располагается большое количество разнообразных механорецепторных структур. Корковая часть тактильного Анализатор а представлена в постцентральной и передней эктосильвиевой извилинах (см. Осязания органы).

Лит.: Ильинский О. Б., Физиология кожной чувствительности, в кн.: Физиология сенсорных систем, ч. 2, Л., 1972 (Руководство по физиологии); Есаков А. И., Дмитриева Т. М., Нейро-физиологические основы тактильного восприятия, М., 1971.

О. Б. Ильинский.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Тактильная чувствительность" в других словарях:

    ТАКТИЛЬНАЯ ЧУВСТВИТЕЛЬНОСТЬ - (англ. tactile sensitivity) разновидность кожной чувствительности, которая связана с механическими раздражителями. С Т. ч. связаны ощущения прикосновения (см. Тангорецепторы), давления и частично вибрации (см. Вибра … Большая психологическая энциклопедия

    - (от лат. tactilis осязаемый, от tango трогаю, касаюсь), ощущение, возникающее при действии на кожную поверхность разл. механич. раздражителей; разновидность осязания. Тактильные рецепторы расположены на поверхности кожи и нек рых слизистых… … Биологический энциклопедический словарь

    ТАКТИЛЬНАЯ ЧУВСТВИТЕЛЬНОСТЬ - (от лат. tactilis осязание...) разновидность кожной чувствительности, с которой связаны ощущения прикосновения, давления и частично вибрации. Совокупность органов человека (рецепторы кожи, проводящие нервные пути, соответствующие центры в коре… … Энциклопедический словарь по психологии и педагогике

    Тактильная чувствительность - разновидность осязания, обеспечивающая различение формы и размера предмета, характера его поверхности, связанный с ощущением прикосновения предмета. Возможен благодаря наличию тактильных экстерорецепторов. Наибольшее количество тактильных… … Физическая Антропология. Иллюстрированный толковый словарь.

    ТАКТИЛЬНАЯ ЧУВСТВИТЕЛЬНОСТЬ - [от лат. tactilis осязательный] разновидность осязания; отражение в сознании некоторых механических свойств предмета, действующих на соответствующие рецепторы кожной поверхности в качестве одного из видов раздражений прикосновения, давления,… … Психомоторика: cловарь-справочник

    Тактильная чувствительность - Разновидность кожной чувствительности, с которой связаны ощущения прикосновения, давления и частично вибрации … Адаптивная физическая культура. Краткий энциклопедический словарь - ЧУВСТВИТЕЛЬНОСТЬ, свойство животных и человека воспринимать раздражения из внешней среды и от собственных тканей и органов. У животных, обладающих нервной системой, специализированные чувствительные клетки (рецепторы) имеют высокую избирательную… … Современная энциклопедия

    Чувствительность способность организма воспринимать раздражения, исходящие из окружающей среды или из собственных тканей и органов, и отвечать на них дифференцированными формами реакций. Виды чувствительности Общая чувствительность Поверхностная… … Википедия

Соматосенсорная система - это система кожной и костно-мышечной (проприоцептивной) чувствительности, которая обеспечивает формирование тактильных, температурных, болевых ощущений и чувств положения тела в пространстве и движения структур опорно-двигательной системы.

Система кожной чувствительности формирует тактильные, температурные и болевые (ноцицептивные) ощущения.

Тактильная рецепция. механорецепторы

Тактильная рецепция обеспечивает ощущение прикосновения, давления, вибрации, щекотки и зуд и осуществляется благодаря Механорецепторы (рис. 7.6). Механорецепторы кожи, за морфологически функциональными свойствами, относятся к первинночутливих рецепторов. Они экстерорецепторы, потому передают информацию о контакте с внешней средой.

Тактильные рецепторы разделяют на две группы:

■ инкапсулированные нервные окончания или корпускулярные рецепторы;

■ свободные нервные окончания.

Инкапсулированные механорецепторы кожи

Тельца Гиачини - расположены в коже и подкожной ткани, особенно в коже пальцев, наружных половых органов, груди. Они имеют вспомогательную структуру овальной формы из концентрических слоев клеток, которая окружает нервное окончание афферентного нервного волокна. Деформация вспомогательной структуры приводит к возникновению в нервном окончании рецепторного потенциала. Рецепторы быстро адаптируются, передают информацию нервными волокнами типа Αβ (со скоростью 40-70 мс / с) о грубую деформацию кожи и высокочастотные колебания.

Тельца Пачини раздражаются при быстром перемещении тканей, поэтому важны для оценки быстрых механических воздействий. Они встречаются в местах соединения мышц и сухожилий, в тканях суставов.

РИС. 7.6.

Тельца Мейсснера - расположены в коже, лишенной волос: пальцев кипе и стопы, на ладонной и подошвенной поверхностях, на губах, веках, внешних половых органах, сосках молочных желез. Они размещаются на грани эпидермиса и дермы в сосочковом слое дермы. Быстро адаптируются и передают информацию нервными волокнами типа Αβ (скорость 40 м / с) о движении легких объектов по поверхности кожи и низкочастотную вибрацию.

Диски Меркеля - расположены в глубоких слоях эпидермиса на ладонях и подошве, медленно адаптируются, передают информацию нервными волокнами типа Αβ о прикосновение к коже, структуру поверхности и точную локализацию раздражения.

Тельца Руффини - расположены в глубоких слоях дермы и подкожной ткани, многочисленны в подошвенной поверхности стопы. Они медленно адаптируются, передают информацию нервными волокнами типа Αβ о нажатия.

Свободные нервные окончания

Свободные нервные окончания находятся в эпидермисе между эпителиальными клетками. В сосочковом слое дермы - расположены параллельно дермо-елидермальний предела. Они быстро адаптируются, передают информацию нервными волокнами типа Αδ (со скоростью 10-15 м / с) о давлении и прикосновение к коже. Ощущение зуда, щекотания тоже возникает при раздражении свободных нервных окончаний, расположенных поверхностно в коже, но информация от них передается нервными волокнами типа С (скорость 0,5-3 м / с).

Волосковые рецепторы принадлежат к свободным нервных окончаний, которые окружают волосяные фолликулы, реагируют на смещение волос, быстро адаптируются. Информация от них передается нервными волокнами типа Αβ.

От тактильных механорецепторов информация поступает афферентными волокнами в ЦНС от туловища и конечностей - до спинного мозга, от головы - в составе черепных нервов.

Оценка порогов тактильной ощущение происходит с помощью естезиометра Фрея, который позволяет определять силу давления, возникающего на поверхности кожи. Порог ощущения для различных участков кожи различен и составляет 50 мг - для наиболее чувствительных и 10 г - для наименее чувствительных. Пороги пространственного разрешения для тактильной чувствительности позволяют оценить плотность расположения рецепторов. их определяют с помощью циркуля Вебера, имеет две "ножки" с иглами. Раздвигая их, можно найти ту минимальное расстояние, на котором два прикосновения воспринимаются отдельно. Это и будет пространственный порог различения. Для рецепторов кожи губ он равен 1 мм, для кожи подушечек пальцев рук - 2,2 мм, для кожи кисти руки - 3,1 мм, для кожи предплечья - 40,5 мм, для кожи затылка и спины - 54-60 мм, бедра - 67,6 мм. Оценка тактильного ощущения имеет важное значение для клиники нервных болезней при постановке диагноза поражения различных отделов ЦНС.

Проводящие пути. Медиальная лемнисковый Система

Афферентные нервные миелиновые волокна от тактильных механорецепторов проходят к спинному мозгу через задние корешки и поднимаются в задних столбах в продолговатого мозга, где образуют синапсы с нейронами ядер столбов - тонких / п. Gracilis) и клиновидных (п. Cuneatus) (рис. 7.7). Отсюда начинаются вторые нейроны, которые переходят на противоположную сторону - перекрещиваются, образуя медиальную петлю (lemniscus medialis), к которой присоединяются нервные волокна от ядер V пары черепных нервов. Далее они поднимаются билатерально к специфическим сенсорных переключающих ядер таламуса. В таламусе вторые нейроны медиальной лемнисковый системы образуют синапсы с нейронами вентральных задньолатеральних ядер (вентробазального комплекс). Третьи таламические нейроны передают информацию в сенсорной зоны коры - задней центральной извилины.

Лемнисковый система обеспечивает передачу информации от механорецепторов, позволяет точно локализовать действие раздражающего стимула, проявить силу и градацию силы ощущения.

РИС. 7.7.

Особенностью лемнисковый системы является пространственная ориентация нервных волокон от отдельных частей тела: волокна от нижних частей тела лежат в задних столбах ближе к центру, а от верхних частей - латерально.

В ядрах таламуса голова и лицо представлены медиально в вентробазального комплексе ядер, а дистальные отделы тела - латерально.

Тактильная информация также передается вентральным спиноталамического трактом от тактильных рецепторов информация поступает в задние рога спинного мозга, где идет переключение на второй нейрон. Аксоны вторых нейронов пересекают сегменты спинного мозга и проходят в переднелатеральную квадранте спинного мозга к специфическим ядер таламуса, где переключаются на третьи нейроны, несущие информацию в сенсорной коры мозга в студенистую вещество задних рогов - I, II, III пластины, они переключаются через 1 -2 синапсы на нейроны, аксоны которых пересекают срединную линию и переходят на противоположную сторону, где поднимаются вверх в составе переднебоковую канатика - переднелатеральную сенсорной системы , в которую входят вентральный и латеральный спиноталамического тракты (рис. 7.8). Информация от терморецепторов идет преимущественно в составе латерального спиноталамического тракта до вентробазального комплекса специфических ядер таламуса, а далее - к сенсорной зоны коры. Кроме того, информация передается в ретикулярной формации ствола мозга и далее через неспецифические ядра таламуса к коре головного мозга. Сенсорный спиноталамического тракт от терморецепторов, проходящей через специфические ядра таламуса, называется неоспиноталамичного тракта .

Просмотров